From The Wilderness Publications
FTW Home Page Search Password Retrieval Free Email Alerts Contact Us Help Join Sign In
Join now for access to all of FTW's latest articles and online newsletters! FTW Online Store

Donate to FTW!

Start Here
How to use this Website
About Michael C. Ruppert
Why Subscribe?
Our Achievements
Our Writers
Upcoming FTW Events
Local Peak Oil Preparedness Events

Since 9/11
Bio Warfare
The Bush Family
Civil Liberties
The Draft
Gov't Corrupt/Complicity
Insider Trading
Post Peak Lifestyle
Oil & Energy
(more than 110 original articles!)
Osama Bin Laden
Previous Newsletters
PROMIS Software
Unscrambled Fighter Jets
Infinite War
Watergate II

Pat Tillman
The Tillman Files

C.I.A & Drugs
Regional Conflicts
The Economy
Pandora's Box
Hall of Unsung Heroes

The Forum
Upcoming Events

Shop Online!
Store Main Page
New Products
Packaged Deals
Subscribe to FTW
Videos and DVD's
Audio CD's
Books and Magazines

Watch Lists
Economy Watch

About Michael C. Ruppert
Recommended Reading
Whistle Blowers


Copyright Policy
Terms and Conditions
Privacy Policy
Site Map

655 Washington St.
Ashland, OR 97520
(541) 201-0090

Quick jump to below stories:
Girding Up For the Power Grid
Nations Sign Deal to Study Pipeline Idea
Chavez, Kirchner discuss pipeline
'Take this house and shove it' - More and more Americans are moving to get away from overheated housing markets.
Consumer spending could suffer in 2006 - Cooling real estate market could finally force consumers to pull back. The impact could be huge.
Open and Shut - Four years later, we still have ten big questions
Japan to keep releasing oil from reserves via IEA
Putin reassures Japan on pipeline
Asian oil demand may double as China booms
If winter is bitter, brace for a natural-gas crunch

[This long, non-technical and extremely well-written article on the future of the power grid is a must read. The Electric Power Research Institute (EPRI) is by no means a progressive body. It is a creation of the electrical generating industry. But if Steve Silberman’s analysis is correct (and I think it is), you can take out the fact that Peak Oil and gas are ignored and there’s a presumption of continued growth in this report and see some startling trends. The future of electrical power generation – this will make Catherine Austin Fitts happy – lies in micro generation and co-generation. In short, that means neighborhood power stations, neighborhood control of power generation, and vastly improved efficiencies that use heat (normally wasted) to generate even more electricity.

Cities and towns from Willits, California to Ashland, Oregon to Chicago and New York should be diving into these technologies now; not as a means of continuing the current growth paradigm, but of drastically reducing loss of life and preserving social infrastructure that is essential if we are to avoid chaos and complete societal breakdown in the next five years. Even more attractive is the fact that these options are, for the most part, available to local governments right now. Those communities that start this process now will stand a much better chance of survival. – MCR],1294,44516,00.html

Girding Up For the Power Grid 

By Steve Silberman
02:00 AM Jun. 14, 2001 PT,1367,44516,00.html

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

When Times Square flickered out below him, the pilot feared he was witnessing a terrorist attack. Beneath the suddenly dark canyons of Manhattan, subway trains lurched to a stop, stranding hundreds of thousands of rush-hour commuters. To a satellite in orbit, it must have looked like a major constellation was being snuffed out.

First Toronto went black, then Rochester, Boston, and finally New York City. In just 13 minutes, one of the crowning achievements of industrial engineering - the computer-controlled power grid of the 80,000-square-mile Canada-United States Eastern Interconnection area - was toast.

For the first time in decades, night held dominion over the cities of the Northeast, which were now without traffic signals, television, airport landing lights, elevators, and refrigeration.

You might say that the cascading blackout of November 9, 1965 - eventually traced to a single overloaded relay in Ontario - was the dawn of the networked era. The moment the lights went out, 30 million people woke up to the fact that the apparently seamless scrim of modern life is stretched over an intricate and vulnerable technological infrastructure that transcends national borders.

Now, 36 years later, in the halls of the Electric Power Research Institute, they've been calling the energy debacle in California the perfect storm. Founded during the national period of soul-searching that followed the failure of the grid in 1965, EPRI believes we still have not fully heard the message of that massive blackout. The underlying lesson of the current crisis, researchers at the institute believe, is that we need smarter methods of electricity generation, transmission, and delivery - not just more power. "This isn't about stringing more wires, or rallying around to make today's technology work better," says EPRI's president, Kurt Yeager. "That's trying to put Humpty Dumpty back together again."

The utilities' own privately funded think tank, and the sole independent research organization employed by more than 1,000 power companies, EPRI was the first industrywide R&D consortium in America. It's still one of the largest in the world, representing utilities in 40 countries. EPRI's constituency - ranging from old-guard, investor-owned monoliths like Consolidated Edison of New York to upstarts like Mirant and Dynegy - generates 90 percent of the electricity used in the United States.

The Bush-Cheney administration's declarations about beefing up our energy networks with 21st-century technology rang familiar at EPRI, because the institute has been laying the scientific groundwork for this technology for decades. Though EPRI's oldest members stand to gain from an energy policy that favors traditional means of boosting supply (such as building more fossil-fuel plants, extracting more oil, and reviving the domestic nuclear power industry), the institute's spokespeople share the conviction held by many researchers in our national energy laboratories that the administration's emphasis on supply-side solutions could be disastrous, if the budgets and legislation that follow undercut the search for alternative means of producing, distributing, and using energy.

National debate over the merits of such short-term nostrums as drilling in national wilderness areas, EPRI believes, is a distraction from what's really at stake: our ability to implement a practical blueprint for a radically new conception of the energy grid.

In recent years, a series of technological breakthroughs - and, more important, a critical mass of scientific ideas - has begun to coalesce around a new model for an energy system that would better serve the needs of the near future, while enabling power producers as well as consumers to lessen their impact on the environment in the long term. Both privately and publicly, many at the institute express concern that the policy thrust of the current administration will lock out the most promising set of innovations to emerge in the energy community since the creation of the existing grid in the first half of the 20th century. The end result, they fear, may be to freeze us into high-emissions power pathways for decades to come.

"We've seen the words that they're getting the message," Kurt Yeager says. "Now let's hear the music." In fact, at the budgetary level, the administration has been singing a much different tune - systematically slashing the programs that produced the technological developments they're now touting to sell their policy.

"The current regime in Washington believes that the tree-huggers can go be virtuous and make sacrifices while real men go out and build more pipelines," EPRI spokesperson Brent Barker observes. "They think new technology appears by magic. The problem is that the existing technology puts us on a collision course with the environment. Their strategy is to keep us on that course."

Like the infrastructure itself, the failure of support for long-range R&D transcends national borders. Ironically, as the global economy becomes increasingly dependent on the digital networks made possible by electricity, public funding worldwide for tapping new, cleaner power sources and evolving our infrastructure is tanking. The US spent one-third less on energy R&D in 1995 than it did in 1985. Germany, Italy, and the UK spent two-thirds less. Venture capital and private investment in energy research almost never address systemwide issues. The grid itself is falling through the cracks.

The smarter energy network of the future, EPRI believes, will incorporate a diversified pool of resources located closer to the consumer, pumping out low- or zero-emissions power in backyards, driveways, downscaled local power stations, and even in automobiles, while giving electricity users the option to become energy vendors. The front end of this new system will be managed by third-party "virtual utilities," which will bundle electricity, gas, Internet access, broadband entertainment, and other customized energy services. (This vision is reminiscent of Edison's original ambition for the industry, which was not to sell lightbulbs, but to create a network of technologies and services that provided illumination.)

Now, the digital networks will be called upon to remake the grid in their own image. By embedding sensors, solid-state controllers, and intelligent agents throughout this new supply chain, the meter and the monthly bill will be swapped out for something more robust, adaptive, interconnected, and alive: a humming, real-time, interactive energy marketplace.

EPRI's bland headquarters, just up the road from Xerox PARC in the heart of Silicon Valley, looks like an unlikely place to invent the future of energy. With 750 employees at work in a cluster of office-park bunkers, there are no fuel cell-powered cars undergoing testing in the parking lot, no photovoltaic arrays or wind turbines spinning on the roof. The site serves purely as a command center for nuts-and-bolts science that happens elsewhere.

This dislocation is intentional. EPRI's founding director, Chauncey Starr, who is now 89, was shrewd enough to know that the utilities - then still secure in their monopoly markets - wouldn't be patient enough to give Starr half a decade to build the equivalent of a Bell Labs for energy research. The new operation would have to run lean. His strategy for extracting the maximum value from limited resources was a sensible one. Instead of stealing talent from the utilities' own R&D shops, and sinking billions into new infrastructure, the institute would assemble small, agile, task-oriented teams from the best and brightest in academic, corporate, and government research, outsourcing the lab work to existing facilities. When a project was completed, the findings would be disseminated to the institute's membership, and the team dissolved.

Distributed generation isn't a new idea - it was Edison's first template for universal electrification. Today it goes by another name: micropower.

Over the years, EPRI and its collaborators have contributed a number of refinements to the energy mix, including more efficient photovoltaic arrays and cleaner-burning gas turbines; sensors for remotely controlling the operation of coal and nuclear plants; variable-speed wind turbines that help make the price of wind power competitive with fossil fuels; and 3-D imaging systems for uncovering hidden deposits of natural gas. The institute is widely respected as a source of impartial research data, even by many industry critics, and its reports exert influence on public policy. When three 25-year-old nuclear reactors came up for relicensing last year, EPRI filed risk-assessment reports with the Nuclear Regulatory Commission, and the licenses were granted. The institute is pro-solar and pro-nuclear - that is, EPRI is in favor of electricity.

In the tightly knit clubhouse of Big Energy before deregulation, Starr's blueprint for "virtual R&D" - available to its members for a .3 percent slice of their annual revenues - made a perfect fit. (By contrast, telcos and drug manufacturers commit more than 10 percent of their budgets to R&D.) When the clubhouse doors were thrown open to competition, however, the institute got slammed hard. As the business of selling energy disaggregated into swarms of startups and spin-offs, EPRI's funding slumped from $600 million to $400 million. Allocations for development of renewable resources and increasing energy efficiency - two areas of R&D most essential to securing a sustainable future - took particular hits.

"One unintended side effect of the market restructuring," Kurt Yeager says, "has been a total preoccupation with the immediate."

Two years ago, he decided it was time to pull some heads out of the sand. A former F-4 Phantom flier for the Air Force, red-cheeked and trim at 61, Yeager invited experts from 150 organizations to the institute to brainstorm a set of goals for the next 50 years of energy R&D. He brought together representatives from the Department of Energy, the Natural Resources Defense Council, Rand, MIT, the New York Power Authority, General Electric, AT&T, Motorola, the Nature Conservancy, Exxon, the World Bank, Royal Dutch/Shell, Oracle, Microsoft, and many other organizations. It was the first time that representatives from many of these outfits had sat down in the same room to talk about the future. The long-range prescription distilled from these sessions is EPRI's "Electricity Technology Roadmap" (available in summarized form online at

Meeting the energy needs of the next century, the Roadmap's creators suggest, will require a substantial overhaul in how we think about electricity. The industry's most basic assumptions will have to be put on the table, including the hub-and-spoke hierarchy of the existing grid - based on huge central power stations with long distance transmission lines radiating outward - which has been the backbone of the business since Edison's avaricious protégé, Samuel Insull, became the first utility tycoon in the 1920s.

"In periods of profound change, the most dangerous thing is to incrementalize yourself into the future," says Yeager. "Our society is changing more broadly and more rapidly than at any time since Edison's day. The current power infrastructure is as incompatible with the future as horse trails were to automobiles."

That incompatibility is already apparent in Silicon Valley, where tech giants like Oracle are underwriting the construction of their own balkanized energy network in the form of substations, diesel generators, and power-conditioning systems. For tech-sector installations where a supply of fluctuation-free electricity is critical - chip fabrication plants and server farms - the expense of building independent electricity resources is trivial compared with the cost of equipment failures and network crashes caused by unreliable power. Hewlett-Packard once estimated that a 15-minute outage at one chip fab would cost the company $30 million, or half the plant's power budget for an entire year. The organic development of this backup system of distributed energy resources foreshadows the kind of network that will be required to meet the needs of the digital economy.

The impending marriage of the engineering marvel of the late 19th century with one of the most resonant innovations of the late 20th - the distributed network - hasn't been named yet. In incubators of our energy future like the Pacific Northwest National Laboratory and the Bonneville Power Administration, however, researchers are starting to describe the new system with phrases like the intelligent grid, the energy net, and the Energy Web.

Pieces of this network are already popping up in all sectors of the power industry with the momentum of an inevitable idea, straining against the regulatory and market barriers that are holding it back. Imagine a road map designed by a consortium of mainframe manufacturers who declared in 1960 that the future was in desktop PCs, broadband wireless, and the Internet.

The message of EPRI's Roadmap is that an energy revolution of that scale is already under way.

Swiss engineering giant ABB surprised the world in 1999 by announcing that it was off-loading the business of building nuclear plants to focus on renewables and distributed generation, an umbrella term for various smaller-scale methods for producing electricity closer to the consumer. Distributed generation isn't a new idea - it was Edison's first template for universal electrification, with neighborhood steam plants furnishing power and heat for 1-square-mile lighting districts. Seth Dunn of the Worldwatch Institute uses a more felicitous term for distributed generation: micropower.

Green resources such as photovoltaic arrays and wind turbines fall into the micropower category, as do reciprocating engines, fuel cells, Stirling engines, and gas-fired microturbines. Micropower is surging in world markets, both in industrialized countries and in regions with no electricity, where distributed generation offers rural communities and local entrepreneurs access to power without waiting for the costly grid extensions promised long ago by national utilities.

One of the biggest distributed-generation success stories is the deployment of wind power - now the world's fastest-growing energy source, ramping up at an average of 24 percent per year. Freestanding windmills and wind farms are sprouting up all over, particularly in Europe. Denmark draws 13 percent of its energy supply from renewable resources, and half of the wind turbines in the world are made by Danish manufacturers, such as Vestas Wind Systems and Bonus Energy, which export primarily to Germany, Spain, and the UK. A wind farm under construction in Texas, using Danish turbines, will spin up enough electricity for 139,000 homes by the end of the year, while avoiding 20 million tons of carbon-dioxide emissions.

EPRI was instrumental in giving a boost to the US wind-power market by designing turbines that issue steady streams of electricity under varying wind speeds. With a single memorandum in 1989, a project manager at the institute set in motion a five-year program that pooled the resources of two major utilities and a wind turbine manufacturer to upgrade the technology. EPRI and the Department of Energy formed advisory groups that talked up the potential of wind power in the industry, while utilities and federal and state agencies mapped out promising high-wind sites. EPRI contacted utilities in those areas, seeding the future market. By 1995, variable-speed wind turbines designed by the institute were generating 3 billion kilowatt-hours per year.

Photovoltaics - which make power from sunlight - are taking off internationally as well. This fall, the largest solar-energy project in the world will be rolled out in the Philippines, a cooperative effort involving the Spanish government, the Philippines Department of Agrarian Reform, and BP Solar, the wing of British Petroleum that currently produces more than 10 percent of the photovoltaic cells used in the world. The $48 million project will bring electricity to 400,000 residents of 150 villages on the island of Mindanao, home to one-third of the nation's rural poor. The project will produce enough electricity to create 69 new irrigation systems and 97 drinking-water distribution systems, as well as power lights and medical equipment for 147 schools and 37 health clinics. Seventy-nine new AC systems will also become available, enabling the creation of new local businesses.

The scale of the Mindanao project is extraordinary, but the potential for micropower to raise the quality of life in developing countries - without relying on huge power plants or expensive, difficult-to-obtain fossil fuels - is being demonstrated all over the globe. Just as developing countries are jumping straight to mobile phone service without laying expensive landlines, micropower technologies are enabling those historically left in the dark to leapfrog the hub-and-spoke grids altogether.

In his comprehensive white paper, "Micropower: The Next Electrical Era" (, Seth Dunn offers a roster of thriving solar- and wind-power markets in China, India, Indonesia, and South Africa, where photovoltaic panels run wireless telephone networks in rural areas. Tens of thousands of Kenyan households are going solar in a market driven by local entrepreneurs, and in Zimbabwe, where a major international solar-power summit was convened in 1996, there's a lively generation of startups devoted to designing and installing photovoltaics for home use. EPRI estimates that, for every 100 South Africans who get electricity, 10 new businesses are created. Still, one out of three people on earth has no access to electricity.

In many countries, where supplies of sunlight and wind are enormous and inexhaustible, the primary energy source for the poor is high-carbon biomass. These fuels - crop residues, scavenged wood and charcoal, and cattle dung - take significant tolls on the health of those who burn them, and add to the impact of first-world power profligacy in heating up the atmosphere. In India alone, indoor air pollution created by high-emission fuels causes half a million premature deaths a year.

Hardest hit are women, whose responsibility it often is to provide fuel for household use. In China, nonsmoking women suffer chronic bronchitis, lung cancer, pneumonia, and heart disease at rates rivaling or exceeding those of chronic smokers. These energy cycles are vicious and all-pervading: Where men have migrated out to more-developed urban areas, women - and, increasingly, children - now must clear land and plow fields in addition to scavenging for fuel, food, and water. "What provides the energy that electricity would replace? Women," Yeager observes.

In countries that already have access to electricity, micropower resources will provide ways to reduce carbon emissions, improve energy efficiency, and ease the strain on stressed grids by providing supplemental power during periods of peak use. Not all methods of distributed generation run cleanly - the diesel backup generators keeping server farms and databases online this summer in Silicon Valley also count as micropower. But even the units that run on fossil fuels generally have a lighter environmental footprint than traditional central-generation plants. Microturbines can also make use of a much wider range of fuels, from methanol, propane, and natural gas to "sour gas" normally flared off in oil drilling, thus turning waste into low-emission power. And micropower is a better fit with the quick-turnaround imperatives of the deregulated market; the construction and securing of permits for a new 10,000-megawatt power plant takes years, and requires millions of dollars in capital up front. Most important, scaling the generators to the load reduces energy waste.

There's another virtue in moving power sources closer to home: The thermal energy they produce can provide heat, run air-conditioning systems, or be used to boil water, making steam that generates even more electricity. Like distributed generation, cogeneration is an idea that's been around a while. In the Middle Ages, excess heat from cooking fires was captured to turn roasting spits, and Edison's Pearl Street station piped steam to Drexel Morgan to warm the offices of his potential investors. Cogen was widely employed in US factories, until utility tycoon Samuel Insull's economies of scale spaced the heat and lights hundreds or thousands of miles apart. While a conventional gas turbine squanders two-thirds of its energy input into the atmosphere, cogeneration can result in a total energy efficiency of 70 percent or higher, and cuts CO2 emissions in half. For the past six years, MIT has run a 21-kilowatt gas turbine cogen plant on its campus, allowing the university to meet many of its electricity needs off the grid.

Cogen is booming in Europe, Australia, and Asia (with the exception of Japan, which has limited distribution of natural gas). In China, where grid electricity is notoriously unreliable, 10 percent of the country's total energy supply is in cogeneration, furnishing off-grid power to petroleum refineries, pulp and paper factories, chemical plants, and iron and steel mills. One especially impressive European installation is the Mitte plant in Germany, which meets nearly all the electricity, heating, and air-conditioning needs of central Berlin, while recovering 100 percent of its waste heat. Mitte's neighborhood-friendly design even offers warmed benches for visitors in winter.

The micropower/cogen technology with the most commercial potential - and some of the greatest environmental benefits - is the fuel cell. Employing electrochemical combustion of hydrogen with oxygen, fuel cells are powered by gas, and will eventually be run by supplying hydrogen directly, producing stable streams of current and emitting only water vapor and heat. Unlike gas turbines, they are silent and require little maintenance. When hooked up to water electrolyzers - like fuel cells run in reverse - they can also store electricity as hydrogen, for energy that can be poured back into the system during times of high demand. When photovoltaic panels and gas turbines are networked with fuel cells, their efficiency and reliability soar. Last summer, the US Postal Service began running its mail center in Anchorage, Alaska, off the output of five 200-kilowatt cells. After a one-hour outage crashed the First National Bank of Omaha's data network at a cost of $6 million, the bank put in stacks of fuel cells to power its computer center.

Fuel-cell technologies, such as the proton-exchange membrane cell originally developed by General Electric for NASA, are already driving a major shift in the automotive industry. Last year, Bill Ford, chair of the Ford Motor Company, declared: "I believe fuel cells will finally end the 100-year reign of the internal combustion engine." DaimlerChrysler, Ford, and Ballard Power Systems have already invested a billion dollars toward developing road-ready cells, and General Motors, Toyota, Nissan, Honda, and Mitsubishi have thrown their own billion into the pot. All the major automakers have fuel-cell or hybrid cell/internal combustion vehicles in the pipeline, with cars from Toyota and Honda due on the street in two years. (Both companies already have hybrid electric/gas vehicles - the Prius and the Insight - on the market.)

Turning every car into a roll-your-own generator is just part of a larger shift. Passive energy users are becoming freelance energy producers.

Turning every car into a roll-your-own generator is just one potential expression of the most radical shift in the emerging business model for energy vending profiled in EPRI's Roadmap: the transformation of passive energy users into freelance energy producers, paralleling developments in interactive media, peer-to-peer file sharing, and self-governance. By increasing a sense of ownership in the means of energy production and delivering immediate financial rewards, this power-to-the-people model may prove to be a more potent incentive to smarter energy use than the familiar pleas to save the planet.

Other benefits to a DIY strategy may emerge that are not immediately apparent. As our homes, offices, and public buildings are optimized to more efficiently capture the macrogeneration of sun and wind, and waste less energy, slow changes will be worked on the layout of our cities. David Nye, author of Consuming Power and Electrifying America - two chronicles of how energy infrastructure affects American culture and society - says he believes that adopting the bricolage of technologies and strategies described in EPRI's Roadmap would result in an architectural aesthetic more rooted in the nuances of place.

"American cities will look less alike in a couple of decades than they do now," he says. "The windy upper Midwest urban skyline, for example, could include quite a few windmills, while Arizona cities ought to be using solar power and designing their structures to make the most of that climate."

EPRI's Brent Barker paints a scenario in which cars become the roaming palmtops of the Energy Web, plugging into the grid when they need to recharge - or selling power back, at a profit, when the grid needs it. "If you add up the horsepower of all the machines and engines in US factories, businesses, farms, power plants, mines, ships, aircraft, railroads, and automobiles," Barker says, "you find that 95 percent of the power capacity in our country resides in automobiles, with only about 2 percent in electric power plants." With interfaces for absorbing and distributing the output of this new energy resource added to the grid, he suggests, you could power your home or office with the gas or hydrogen fuel cells in your car, and even help out the local mall during periods of peak demand by jacking into an outlet in the parking lot. Then the bargaining would begin.

"The microprocessor in your car could negotiate with bulk-power trading tigers like Dynegy or Enron to buy power if you needed it," he says, "or to sell power when the price is right. If the price wasn't right, your microprocessor could call all the other microprocessors in the area to negotiate a better deal."

Barker isn't the only one thinking along these lines. Ferdinand Panik, the head of DaimlerChrysler's fuel-cell program, is right there with him, The Economist reported in February. With widespread micropower generation and advanced methods for energy storage in place - such as "reversible" fuel cells, supercapacitors, and flywheels - DIY power providers will be able to aid in stabilizing the entire infrastructure from the bottom up.

Call it net metering writ large. Utilities in 30 states allow custoåmers who generate their own power to sell electricity back to the grid. In March, Senate Democrats introduced a bill that directs energy suppliers to provide net-metering capabilities to all customers with onsite generators that run on renewable sources.

To accommodate these volleys of new transactions, however, the physical structure of the network itself will have to change. The assumption that power flows in one direction only - from the faraway coal plant to the holes in your wall - is deeply embedded in the relays of the existing network. Influxes of power from unexpected sources can even endanger utility personnel. New interfaces for integrating micropower resources into the grid must be developed by industry standards groups like the Institute of Electrical and Electronics Engineers, and the thicket of regulatory barriers against running micropower generators "in parallel" with the grid must be trimmed back. ("Making Connections," a DOE report on the regulatory barriers to integrating micropower into the grid, is available at Working with the IEEE, EPRI is helping to accelerate the process of setting the new interface standards from eight years to two; they may even be completed by the end of this year.

As a commodity, electricity is unique in one overwhelming sense - it's very difficult to stockpile, so supply must be orchestrated to meet demand with split-second precision. Electrons do not behave in an orderly fashion, like cars getting onto a highway, traveling to their appointed exit, and filing off. The grid is more like a system of canals. Power plants pump energy into the canals, it sluices around, and then substations draw it off and siphon it to the customer. A single power transaction sends eddies of electricity through the grid. With the deregulation of the industry enabling new power plays like the wholesale trading of bulk electricity, the number of transactions has soared more than tenfold. Trying to precisely manage activity on the grid with electromechanical relays has become the art of narrowly averting disaster.

Tapping the new fleet of energy resources will require something that is already hard to come by for system operators - the ability to tell power where to go. FACTS (flexible AC transmission system), a breed of solid-state devices developed by EPRI and Westinghouse that was 20 years in the making, promises to give transmission companies and system operators the capacity to deliver measured quantities of power to specified areas of the grid. In the real-time interactive energy marketplace, technologies like FACTS will allow system operators to send power along "transactional pathways," rather than just down the paths of least resistance.

Utilities have employed computers to monitor grid activity since the earliest days of IT. Even with the current generation of supercomputers, however, managing load flow is a tricky business.

One particularly vexing challenge is minimizing power bottlenecks and "loop flows." As more transmission networks are linked together into huge service areas, electricity meanders around, leaving and reentering areas of the grid. This creates congestion that drives up prices, sets the stage for cascading outages, and wastes tremendous amounts of energy, as power looping through the system bleeds off as heat. In June of 1998, loop flows and grid congestion caused by two weak links on a grid in the Midwest contributed to horrendous spikes in spot-market prices, which jumped from $25 to $7,500 per megawatt-hour. A month later, another heat wave exploded spot prices up to $9,999 per megawatt-hour - where the prices maxed out because software could accommodate only four digits. In the next few years, EPRI predicts, more and more electromechanical switches (like the relay in Ontario that caused the 1965 blackout) will be replaced by solid-state devices like FACTS.

Think of FACTS controllers as routers for the Energy Web. The technology grew out of research conducted for Reagan's original Star Wars program, and may turn out to be the most practical benefit to come out of the $60 billion spent on that quest. Developed by EPRI systems designer Narain Hingorani (who has since left the institute), the solid-state system was adapted from silicon storage devices designed to fire 1,000-megawatt laser cannons. American Electric Power brought the first FACTS unified power flow controller online in Kentucky in 1998, and nine other utilities currently use it. Additional solid-state power controllers are proliferating throughout the energy network. One problem with such devices is that they're expensive. New semiconductor materials like silicon carbide, gallium nitride, and thin-film diamond should make them more affordable.

Another critical challenge facing the architects of the next grid is how to deal with the heat caused by electrical resistance. The carrying capacity of transmission cables depends on how hot they can get. FACTS devices give operators some leeway by allowing them to fine-tune capacity, but the best way to handle millions of new transactions would be to swap in new cables that have zero electrical resistance. At a test installation in Detroit this summer, Detroit Edison is replacing copper cables with ones made of high-temperature superconductive (HTS) ceramic. Since HTS cables can carry more voltage, one installation does the job of three standard cables of the same diameter, so switching to HTS doesn't require more basic excavation, and leaves more room in the trenches for fiber-optic pipes - or more gas lines to keep millions of backyard microturbines spinning.

If the industrialized world still consisted only of lightbulbs, simple motors, and electric toothbrushes, the existing level of electrical service, minus rolling blackouts, might be sufficient.

In utility-speak, today's grids provide "three-nines" reliability - power reliably delivered 99.9 percent of the time, which translates into hours of sags and spikes per year, distributed intermittently over periods lasting nanoseconds to minutes. But feeding three-nines power to today's warp-speed CPUs is like dumping crude oil into a Porsche. That's why the spaces under our desks, and the insides of our laptops, are cluttered with such power-conditioning devices as transformers and surge suppressors, which devote a significant percentage of our energy supply to warming up the furniture.

The high-end energy product of the future may be what EPRI chief Kurt Yeager calls perfect electricity - uninterrupted quantities of power at levels of reliability reaching 99.9999999 (nine-nines). Among the end users who will be most appreciative of nine-nines power will be server farms, chip fabs, medical facilities, stock exchanges, and credit card processing centers. But any plant that uses so-called continuous-process manufacturing - from textile mills and newspaper printers to drug manufacturers - will be a likely candidate.

There's another thing about all that digital equipment. Microprocessors, and most other modern electric appliances, actually run on direct current, though utilities have been shipping alternating current down the pipes since Nikola Tesla demonstrated that Edison's DC couldn't be exported cheaply over long distances. A lot of the hardware in our hardware is there just to invert AC to DC and back again, wasting even more precious energy. Wind turbines and photovoltaics pump out DC - albeit in unpredictable quantities. Hooking renewable resources up to cutting-edge energy-storage systems like Regenesys makes for green, direct-to-digital power. The Bonneville Power Administration is working on what it calls the virtual green extension cord to make renewable resources more digital-friendly at one end, more grid-friendly at the other.

EPRI foresees the popularity of DC microgrids: high-nines islands in the choppy seas of imperfect electricity. These microgrids could be one of the amenities available in "premium-power parks," along with fast Net connections and other services. Such parks already exist. UC Irvine teamed up with the Southern California Gas Company and Southern California Edison to build one, specifically as a "living laboratory" to incubate technologies and business models for the next grid. EPRI sees these islands expanding to provide super-reliable, digital-ready power to urban centers.

New high-voltage DC applications developed by the institute are also serving to make good interfaces between grids. HVDC bridges can act as filters, allowing previously incompatible systems to be linked together, and preventing power disturbances on either side from propagating to the other. Last summer, EPRI opened a link between grids in Texas and Mexico - a small step toward the global network of energy envisioned by Buckminster Fuller as "the final goal of the World Game."

Last summer, EPRI opened a link between grids in Texas and Mexico - a small step toward the global network of energy envisioned by Buckminster Fuller.

You can recognize the emergence of the energy network of the future in a trickle of technologies swelling into a flood.

At Oracle, energy-use managers carry pagers that alert them if demand is nearing overload, which allows them to notch back nonessential usage, or bring backup systems online. In May, Puget Sound Energy in Washington began offering residential customers discount power at night and on weekends by installing smart meters that transmit time-stamped reports to the utility across a wireless network. Aladn, a product introduced last year, allows individuals to monitor and tweak the energy consumption of home devices like lights, kitchen appliances, and air conditioners from any Web browser. Sage Systems is marketing the software to utilities by bragging that its product gives them the power to "shed load instantly" by "setting back a few thousand customers' thermostats by 2 degrees ... [with] a single command over the Internet."

New business models for providing electricity and integrated energy services are emerging all over the world with astonishing speed. In Italy, a utility is wiring millions of houses to accommodate networks made by Echelon, a US company that will let you control home-energy use from your mobile phone Web browser. In Denmark, a utility sold its customers more efficient refrigerators to reduce energy consumption over the long haul. Instead of shelling out more every month for wasted electricity, customers paid off the new refrigerator, yielding an environmental payoff as well.

Even before digital networks and the grid find more ways to talk to each other, the Internet is having unexpected effects on patterns of energy use. It has become commonplace to frame the Web as the biggest energy hog around. In an often-quoted Forbes article published in 1999, Peter Huber declared, "Somewhere in America, a lump of coal is burned every time a book is ordered online ... a billion PCs on the Web represent an electricity demand equal to the total capacity of the US today." Two new studies, however, suggest the contrary: that the Net could turn out to be a powerful mechanism for reducing "energy intensity" - the amount of energy expended per dollar of GNP. A study commissioned last year by the DOE at the Lawrence Berkeley National Laboratory ( and a 1999 study by the Center for Energy and Climate Solutions ( indicate that by streamlining supply chains, enabling telecommuting, and reducing trips to the mall, the net effect of the Net may be to increase energy efficiency and significantly cut carbon emissions.

More surprises are in store. Last year, Steve Hauser at the Pacific Northwest National Laboratory started waking up in the middle of the night, thinking about what was wrong with the existing energy networks. Before coming to PNNL, he had worked at the National Renewable Energy Laboratory for eight years, diligently ramping up the effectiveness of solar systems, hybrid electric vehicles, and other elements of the greener energy portfolio. He watched the efficiency curves go up, and the prices per kilowatt ease down. But something wasn't happening. "The technology worked," he recalls, "but the markets weren't absorbing it. I thought, 'There's something fundamentally broken here. What is it?'"

Over at Oak Ridge National Laboratory, a researcher named Marilyn Brown was pondering similar questions. Brown is part of a team that prepared a report called "Scenarios for a Clean Energy Future" ( at the request of the DOE. She lamented the fact that industry restructuring had stripped out one of the few feedback loops between utilities and customers that energy-efficiency advocates had fought for years to obtain: demand-side management. DSM is the practice of utilities negotiating with their customers to notch back demand during peak hours, and generally offering education and tools for more efficient ways of using energy.

It may sound odd - an industry convincing customers to buy less of its product - but because spot-market prices fluctuate wildly, it's often cheaper for a utility to reduce supply to customers who have previously agreed to such a curtailment than it is to keep pumping out the power and riding the market. In energy-modeling studies Brown designed at Oak Ridge, she found that DSM and energy-efficiency initiatives - which had taken off in the early '90s, then nearly evaporated when the market heated up under deregulation - had worked splendidly.

Those twirling dials on the meter in your basement are a classic example of an interface that displays information where you can't act on it. By contrast, the defining characteristic of business models that have prospered in the digital age, Alan Greenspan told Congress in 1999, has been innovation that enables providers to "detect and respond to finely calibrated nuances in consumer demand." Without those feedback loops hardwired into the grid, observes researcher Terry Oliver at the Bonneville National Lab, the entire electrical infrastructure will remain a leaky bucket. "I gradually realized that pouring more energy, of a different kind, into a leaky bucket wasn't going to make a difference," he told me. "You have to fix the bucket."

Now researchers like Oliver, Steve Hauser, and Mike Hoffman at Bonneville (where the term Energy Web was coined) are finding ways to embed real-time information about the cost of power, and methods for automating demand-side management, throughout the energy supply chain. Imagine an air conditioner that receives constantly updated market signals about the price of electricity on the grid and knows what the other air conditioners in the vicinity are doing. By easing down demand when energy is expensive (or when less green power is available), such devices could collaborate with all the other smart appliances in the neighborhood to lighten the load - or crank up micropower reserves - when the grid is peaking out.

Expand this model to include anything that uses electricity and doesn't need to be maintained at a constant demand level to get the job done - such as water heaters, fans, thermostats, and the huge banks of lights in warehouses and malls. Minor fluctuations in the operation of these systems, says Marilyn Brown, will be undetectable to users: no cold showers. Now envision millions of cheap Band-Aid-sized sensors (such as those in development at 3M) fastened everywhere, feeding the network data about temperature, light, and moisture - a rich, fine-grained datastream about the state of the world in any given instant.

For the past few months, Hauser and his team at the Pacific Northwest National Lab, and Hoffman and his crew at Bonneville, have been negotiating with appliance manufacturers like Whirlpool to find new ways to embed connections to this network in their products.

None of these appliances and sensors would have to be very intelligent on their own, and few of the transactions would have to go through a central authority, such as the utility, for the performance and resilience of the whole system to improve. But every node in the network would have to be awake, responsive, flexible, and, most important, interconnected with everything else. A distributed network. An Energy Web.

Where EPRI parts ways with its critics is partly in how to fix the bucket, and partly in what to put in it.

The institute's ties to the industry put it at odds with those who believe the continued existence of huge central-generation plants is at the heart of the problem. Karl Rábago of the Rocky Mountain Institute participated in the original brainstorming sessions at EPRI. Although he believes the Roadmap is "a legitimate effort to get ahold of the future," he says that discussions were constrained by EPRI's role as the utilities' own think tank. Rábago maintains that the Roadmap doesn't focus nearly enough on energy efficiency and DSM. And "imagining a future without nuclear - that wasn't even up for consideration," he says.

Since its inception, EPRI has argued that nuclear power will play a central role in the energy mix of the future. Founding director Chauncey Starr, who still comes to work at the institute nearly every day, was one of the first architects of civilian nuclear power after World War II. In the early '70s, EPRI was a proponent of liquid metal fast breeder reactors as potential sources of cheap, unlimited electricity. Now spokespeople for the institute point to France, where 70 percent of energy needs are met by nuclear, as proof that well-designed nukes, properly managed, can be incorporated into an environmentally sustainable infrastructure.

The Homer Simpson-proof nuke of the future, EPRI says, will be the pebble-bed modular reactor (PBMR), fueled by .5-mm uranium oxide granules sealed in tennis-ball-sized "pebbles" made of graphite and silicon carbide steel. PBMRs are smaller than conventional reactors, and can be up and running in a couple of years. "They're walk-away safe," an institute spokesperson says breezily. "If something goes wrong, the operators can go out for coffee while they figure out what to do." Exelon, which generates a significant portion of the nuclear power in the US, and South Africa's national utility, ESKOM, have already planted stakes to build a PBMR in South Africa by 2005. Last March, an Exelon executive told a House Energy and Commerce subcommittee that his company plans to roll out "a number of PBMRs" in the US, pending Nuclear Regulatory Commission approval.

Whether PBMRs prove to be "walk-away safe" or not, it will still take a significant amount of breakthrough R&D - and industry public relations - to address the perennial problem of where to stash the reactors' spent fuel, which has a half-life as extended as any radioactive material: that is, up to 20 times longer than any man-made structure has stood on Earth.

EPRI's optimism about this "nuclear revival" should resonate well with the current administration. A week before Exelon appeared before the subcommittee, Vice President Dick Cheney enthused on the cable-TV talk show Hardball, "If you want to do something about carbon-dioxide emissions, then you ought to build nuclear power plants, because they don't emit any." The new federal energy strategy puts building new reactors near the top of its agenda, though the president's 2001 budget cut funding for increasing reactor safety and scrutinizing the economics of nuclear power.

A commitment to R&D that enables long-range strategies to reinvent the energy system will require innovative policymaking up to the federal level, says M. Granger Morgan, head of the department of engineering and public policy at Carnegie Mellon University. While he believes tax credits for corporate support of consortia like EPRI would help, he favors an even stronger prescription: a federal mandate requiring a very modest contribution to basic energy research (perhaps .0033 cents per kilowatt-hour, which would generate a billion dollars a year) as part of the cost of doing business.

Until the new energy networks are in place, the fastest, cheapest, and cleanest way of tapping more power is all around us: increasing energy efficiency. The administration's budget, however, called for a 37 percent cut in overall R&D for energy efficiency, while slashing the Federal Energy Management Program - which maximizes energy savings in the government's own buildings - by nearly half. Funding for the Electric Energy Systems and Storage programs - which examine the potentials of distributed generation, integration of real-time controls on the grid, energy storage, and superconductor research - shrunk from $52 million to $34 million. Renewable-resource research was cut by a third.

"These are huge cuts in areas of government that develop new, more efficient technology at our national labs, which certainly sends the wrong signal to the marketplace," says Mark Hopkins of the Alliance to Save Energy, a bipartisan coalition that encourages energy-efficiency investments. He added, "The mining and oil interests have huge megaphones up on the Hill. The White House is turning them up."

When I asked an employee at another national laboratory, who would not speak on the record, if the energy researchers he knew shared his concern about the direction of policy under the new administration, he said, "Only everyone I know, and everyone I talk to. There's tremendous consensus. The only saving grace is, it might only be for four more years."

"Electricity occupies the twilight zone between the world of spirit and the world of matter" - a world ever more managed from the demand side.

EPRI's Steve Gehl has been out pounding on boardroom doors and congressional staffers' offices for months now, evangelizing the institute's plan for fixing the bucket, with mixed results. In the Netherlands, the Ministry of Economic Affairs has asked EPRI to develop a road map for the Dutch energy industry. Gehl's contacts at the DOE are concerned that the new federal policy emphasizes the extension of existing technologies, at the expense of the fundamental research required to reach the Roadmap's goals. "You need to do a fair amount of heavy lifting to get people interested in strategic planning," he acknowledges. "But it's clear that sustainable Rome was not developed in a day. We're in it for the long haul."

This summer, EPRI will launch a nonprofit affiliate called the Electricity Innovation Institute to match funds from public and private sources for research teams working on breakthrough R&D. Former US Deputy Secretary of Energy T. J. Glauthier will lead this new organization, and the majority of its board will be drawn from outside the utilities. Part of the task ahead for the new group will be convincing decisionmakers in the industry and in the public sector that funding research into exploring radical new energy pathways, and ending power poverty in developing nations, is worth more than a fraction of the investment we're about to pour into building additional coal and nuclear plants and stringing more wire.

The past 30 years have brought some of the best minds in the energy industry to an outlook surprisingly in accord with one of its outspoken critics, economist E. F. Schumacher, who declared in 1973 that the problem with the utilities was that they treat limited natural resources, like fossil fuels, as income rather than as capital. "If we recognized these resources as capital," he wrote in Small Is Beautiful, "we should be concerned with conservation; we should do everything in our power to minimize their current rate of use; we might be saying ... that the money obtained from the realization of ... these irreplaceable assets ... must be placed into a special fund to be devoted exclusively to the evolution of production methods and patterns of living which do not depend on fossil fuels at all, or depend on them only to a very slight extent."

Schumacher might have appreciated the respect for appropriate scale in Chauncey Starr's response when I asked him what made him proud of the legacy he built at EPRI. He replied that it isn't any particular technological breakthrough or study, it's the way the institute works: "We try to be tremendously efficient and reliable, always open to the public, and ambitious within our means."

There seems to be something slightly intoxicating about electricity, because predictions about its future often have the whiff of an author tipsy on one form of juice or other. In 1913, a man named Elbert Hubbard invited those who were "engaged in the business of harnessing electricity" to join a fraternal organization called the Jovians. (Thomas Edison, Samuel Insull, and George Westinghouse all joined.) Electricity occupies the twilight zone between the world of spirit and the world of matter," Hubbard wrote. "Electricians are all proud of their business. They should be. God is the Great Electrician."

It could be that some of the hopes that gave birth to the nuclear industry - of building an unlimited utopia of electricity that would be "too cheap to meter," of actions taken with the consequences long deferred - were the intoxicated dreams of a young soul. Perhaps old souls dream of networks that function the way the distributed systems designed by the Great Electrician do: smart at the top but smarter at the bottom, self-regulated by millions of feedback loops, and minutely aware of the world around them - efficient, reliable, always open, and ambitious within their means.

Back To Story List

Nations Sign Deal to Study Pipeline Idea

By Associated Press
December 7, 2005, 4:38 PM EST

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

CARACAS , Venezuela -- Venezuela, Brazil and Argentina have signed an agreement to study the possibility of a South American natural gas pipeline, officials said Wednesday.

Venezuelan energy minister Rafael Ramirez, his Brazilian counterpart Silas Cavalcante Silva and an Argentine delegation signed the preliminary agreement in Caracas on Monday, Venezuela's state oil company, Petroleos de Venezuela, S.A., said in a statement.

Energy ministers from the three countries will further discuss the issue at a summit of the Mercosur trade bloc later this week in Montevideo, Uruguay, according to PDVSA.

Venezuela has proposed a network of pipelines to carry its natural gas to South American markets and eventually tap into supplies in Bolivia, the continent's second-largest source after Venezuela.

President Hugo Chavez has said such a network would make South America self-sufficient in gas and pledged last month to build the estimated $10 billion pipeline, which would run south from Venezuela.

The cost of the pipeline and environmental concerns that it would cut through Brazil's Amazon rain forest have led to questions about the project's viability.

Almir Barbassa, the chief financial officer of Brazil's state oil company Petrobras, said Tuesday that to make such a huge project viable, the pipeline would need to be 50 inches wide, adding to its cost.

Venezuela is set to become Mercosur's fifth full member, along with Argentina, Brazil, Paraguay and Uruguay, at the summit beginning Thursday.

Copyright 2005 Newsday Inc.

Back To Story List

Chavez, Kirchner discuss pipeline

Monday, November 21, 2005

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

PUERTO ORDAZ, Venezuela (AP) -- President Hugo Chavez sought to clear the way for Venezuela to join the South American trade bloc Mercosur as he met Argentine leader Nestor Kirchner Monday in talks that also focused on plans to build a natural gas pipeline between the two countries.

Venezuela has proposed a network of pipelines to carry its natural gas to South American markets and eventually tap into supplies in Bolivia, the continent's second-largest source after Venezuela. The cost for a pipeline running south through Brazil to Argentina has been estimated at $10 billion (euro8.5 billion).

The two leaders visited a hydroelectric dam that supplies power to millions of Venezuelans, smiling as they greeted workers but making no comments to reporters.

Some $223 million (euro189 million) in Argentine investment for upgrades to the dam and increased Venezuelan fuel sales to Argentina were among accords the leaders were expected to sign Monday at the close of their talks.

Argentina is backing Venezuela's bid to become a full member of Mercosur, which also includes Brazil, Paraguay and Uruguay.

Chavez says the trade bloc represents an alternative to the U.S. proposal for a hemisphere-wide free trade zone, which has been criticized by Kirchner and other Mercosur leaders.

Chavez has argued the U.S.-backed free trade zone would help big U.S. companies at the expense of Latin America's poor.

Chavez, a critic of the U.S. government and close ally of Cuba's Fidel Castro, has sought to build strong ties with left-leaning leaders across Latin America, including Kirchner.

This year, Venezuela bought $950 million (euro791 million) in Argentine bonds, and Chavez said he would talk with Kirchner about buying more.

The Argentine president arrived Sunday night in the eastern city of Puerto Ordaz, about 500 kilometers (310 miles) southeast of Caracas.

Venezuela 's bid to join Mercosur has backing within the group, and Kirchner's visit was expected to help the leaders sketch out details of an accord ahead of a December 9 meeting in Uruguay where Chavez hopes to make his country a full member.

Venezuela is an associate member, along with other nations from Chile to Colombia. Mexico also has expressed interest in joining as a full member.

Backers say that Mercosur, created in 1994, has helped boost trade. Critics say it has made few concrete achievements.

Venezuelan opposition leader and presidential candidate Julio Borges warned the country would lose jobs by joining the trade bloc. Chavez has called it a path to improving all members' economies through greater cooperation, rather than unrestrained U.S.-style capitalism.

Other agreements expected during the talks included a deal for Argentina to help install an elevator-manufacturing business in Venezuela.

The leaders were expected to touch on a bitter dispute between Chavez and Mexico's Vicente Fox that last week led both leaders to withdraw their ambassadors. The two began to feud at a recent summit in Argentina, where Fox supported the U.S. proposal for a Free Trade Area of the Americas and Chavez called the idea dead.

Chavez later labeled Fox a "puppy" of the United States, but during the weekend said he hoped the flap soon would be resolved.

Copyright 2005 The Associated Press.

Back To Story List

'Take this house and shove it'

More and more Americans are moving to get away from overheated housing markets.

December 6, 2005
By Les Christie, staff writer

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

NEW YORK ( - Many residents of high-priced housing markets around the country are cashing out and moving to more affordable areas.

In Massachusetts, a quarter of the people in the state said they would leave if they had the opportunity, according to a poll by MassINC, a non-profit public policy think tank. They would join some 170,000 Bay Staters who left for other parts of the United States between 2000 and 2004.

The No. 1 reason cited by those who want to leave: The high cost of living. And the No. 1 area needing major improvement: Housing affordability.

On the other side of America, Hawaii faces a similar mindset -- two out of every five residents say they have considered leaving the islands because of the cost of housing, according to a poll co-sponsored by the Hawaii Business Roundtable and Pacific Resource Partnership.

There are other places that have been affected.

California suffers a net loss of about 100,000 residents a year to other states, according to In recent years, many have cashed out their rapidly appreciated homes and moved to Arizona, Washington, and Oregon.

But now that prices have climbed in those states as well, the latest trend is that Californians are turning to the Midwest, where spacious houses are available for half of the cost of similar space in Los Angeles.

"It makes increasing sense if you can buy more house and still live in a good area," says Conrad Egan, president and CEO of the Center for Housing Policy, a non-profit group that seeks to make sense of the nation's housing policy.

Compelling math

On Long Island, the once bucolic suburb but now heavily developed region next to New York City, about 70 percent of residents are at least somewhat concerned that high housing costs will drive their families from the region.

And this is not a far-off issue -- 45 percent said it was at least somewhat likely that they would move out during the next five years.

There are two factors at work, according to Carrie Meek Gallagher, project director of the Long Island Index, which published the findings.

The first is that younger Long Islanders aged 18 to 34 are unable to afford decent homes.

"Many families spend more than half their income on housing,"says Egan at the Center for Housing Policy.

The second is that older residents who already own increasingly valuable property find they can sell their present homes, buy in less expensive locales, and have big nest eggs left over.

For them, the numbers add up like this: A Long Island couple with income of $100,000 wants to move to Daytona Beach. Florida as well as Georgia and the Carolinas are prime destinations for Long Islanders.

According to's cost of living calculator, they would need only about $68,000 a year there to live as they're accustomed to. (Try different scenarios with the tool calculator above.)

And selling their house and buying a new one down South would produce a big fat dividend. The American Homebuilders Association reports that a comparable home in the Deltona-Daytona Beach area, for example, costs about $194,000 compared with $434,000 in Long Island's Nassau County.

Younger Long Islanders, says Gallagher, often find that they may have to take a slight pay cut when they move to the Sun Belt, "but they more than make up for it by being able to buy a brand new house for half the price it would cost on Long Island."

The trend has already taken root and seems to be accelerating.

"There was a big jump, from 62 percent to 70 percent, in one year of the 18-to-34 age group who think they are likely to leave within the next five years," according to Gallagher.

Eroding affordability

On the other coast, an exodus of Californians leaving for Nevada has helped transform the housing market in Las Vegas into one of the hottest in the country.

But there are signs that Vegas is about played out. The median house there has leaped to $283,000 and theratio to median income is now about 4.8, nearly as high as Long Island's ratio of about five to one.

The jump in Vegas has caused many Californians to think elsewhere.

For example, California money pouring into Arizona has helped make Phoenix the hottest house market in the country, with home values ballooning 55 percent over the last 12 months, according to the latest statistics from Office of Federal Housing Enterprise Oversight, which regulates Fannie Mae and Freddie Mac.

It's even been reported that Las Vegans are starting to pull up stakes for the cheaper markets such as Phoenix, Tucson, and Chandler, all in Arizona.

Now, what odds could you have gotten betting on that a few years ago?

Back To Story List

Consumer spending could suffer in 2006

Cooling real estate market could finally force consumers to pull back. The impact could be huge.

November 21, 2005
By Parija Bhatnagar, CNN/Money staff writer

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

NEW YORK ( - Here's what consumers can look forward to when the midnight bell-ringing comes to a stop: sharply higher home heating bills, holiday credit card bills, rising interest rates -- and now what looks like a slowing real estate market.

So forget about the typical holly jolly tidings for 2006.

Economists interviewed for this story all say that they're "concerned" about whether cash-strapped Americans have much gas left in the tank to keep being the main driver of economic growth in the months ahead.

Some experts, such as University of Maryland business professor Peter Morici, are more skeptical than others.

"The cooling housing market is very significant," Morici said. "People have been using equity from their home to prop up their spending."

And while gasoline prices at the pump have retreated considerably from their post-Katrina highs, they're still up some 15 percent from a year ago, he said. "That takes a considerable bite out of the household budget," Morici added.

Although he doesn't expect consumers will buckle over the holidays -- he's predicting a "decent" season with total sales up about 5.5 to 6 percent overall -- watch out for the post-holiday blues, when people realize that they're poorer in the new year than they were a year ago.

"We'll likely see problems in the first-quarter," he said. "The savings rate is negative, there's high credit card delinquencies, home equity is not there at the same levels as before and home prices will fall further. Basically, people are spending much more than they are taking in."

Any pullback is likely to be felt quickly since consumer spending fuels about two-thirds of the world's largest economy.

"The economy will slow next year," Morici said. "On the plus side we have falling gas prices but that decline won't be enough to offset falling home prices."

He predicts the economy will slow as the year progresses, with gross domestic product growing 3.6 percent in the first quarter, 3.5 percent in the second quarter and 3.3 percent for the rest of the year -- versus a 3.8 percent reading for the third quarter.

He sees consumer spending growing about 3 percent next year, adjusted for inflation, down from about 3.5 percent this year.

"Consumer spending has been pulling the wagon for a while now," Morici said. "That won't be the case next year."

Home, "bittersweet" home

Experts say the nation's housing market has made consumers feel wealthier, acting as a bulwark against the summer's rising energy prices.

When interest rates were falling and home prices were rising, Americans quickly refinanced their mortgages at the lower rates, effectively turning their homes into piggy banks, and raiding them for cash.

In 2004, home loan refinancing activity contributed about 7 percent of total disposable income, up from 5 percent the year before, according to Nariman Behravesh, chief economist with Global Insight.

Now, with interest rates rising and home prices softening, refi activity is slowing, according to the Mortgage Bankers Association. The group's index of refinancing applications recently dropped 3.4 percent, its third consecutive weekly decline, to the lowest level since early April.

Two other measures of the housing market -- housing starts and building permits -- fell in November, raising worries about the housing market and the strength of home prices in the long run.

Behravesh at Global Insight thinks refi activity in 2006 will decline further, contributing just 2 to 3 percent to consumers' total disposable income, or money that is spent on such items as clothes, shoes, DVDs and home furnishings.

Behravesh, too, foresees some slowdown in consumer spending. "Consumers as the major growth engine will no longer be the driving factor for the economy," he said.

Instead, he points to increased business spending on the back of "strong corporate profits" and a surge in exports as two factors that could support the economy, even if the consumer starts to wilt.

"It's not as if the consumer will collapse," he said. "The labor market is adding about 180,000 jobs every months. That's quite decent and it's help retail sales. Interest rates are rising gradually and that's a bit of a brake on the economy.

"Housing prices are cooling but they're not falling. Even if housing prices fall 10 percent, that will reduce (growth in) consumer from 3 to (about) 2 percent. Even that wouldn't be a recession scenario," he said.

Steve Cochrane, managing director with, agreed that a stable labor market has helped to spur spending.

"I won't say that the labor market has hit a home run but the unemployment rate has not gone up, which is important," he said.

But as housing activity slows, there's a risk that construction and other real estate-related jobs will suffer, especially in the hot markets in California and along parts of both coasts.

In addition to troubling refi trends, University of Maryland's Morici said he's also carefully watching personal income levels.

"Weakening refi activity is not as imperative as a fall in disposable income," he said.

"Until last month, wage growth hasn't been too great. Most people don't have any control over this. You can't go into your boss' office and pump your fists asking for a raise. Lower wages means people have less money overall to spend."

Back To Story List

[Can you say “limited hangout”? I can. And it’s time to say it again.

Among people who really understand 9/11, the wargames, Peak Oil, and the single picture they comprise, there are two schools of thought about the kind of article the Village Voice has run here. Some people hate the Jarrett Murphys and Amy Goodmans of the world even more than they hate outright liars like Judy Miller – because the progressive journalists who tell half-truths ought to be aware of the real story, and if they are, they ought to take the risks Gary Webb took and tell that real story while they can. Other people consider the risks, forgive the journalists who won’t run them, and prefer a half-truth to a whole lie. Both positions are frustrating.

“There has never been a true accounting of why the nation's leaders were out of the loop for so long that morning.” The U.S. Government has never given a true accounting; this would be clear if Murphy had said “true admission.” But a true accounting has been made. Crossing The Rubicon – the largest selling book on 9/11 with the exception of the bogus Kean Report – showed that Bush was out of the loop because Cheney wanted him out of the way. The Vice President and his entourage knew that there would be an attack in the week of September 9 th, 2001 using commercial aircraft to fly into buildings symbolic of American power, including the WTC. Cheney proceeded to neutralize the most powerful Air Force in the world (over the most protected airspace in the world), right during that period. How? By scheduling more than five simultaneous wargame drills that dispersed American fighter jets far away from the attack zone. The same drills also polluted the air traffic screens with game-related information that made the number of apparent hijacks appear as high as 21 at various moments of that morning. That explains the utterly unprecedented 37 minute delay in fighter response. It also explains the bogus threat to Air Force 1 that kept the President powerless.

Everybody who is paying attention to 9/11 has known these things for more than a year. They also know that a massive disinformation campaign – similar to the abundantly documented disinfo program run by the CIA to conceal the involvement of David Atlee Phillips and Desmond Fitzgerald in the murder of the President in 1963 – has been running since the Sadist in Chief picked up his bullhorn. Holograms instead of planes, Israel in the lead role, pods under the aircraft – anything but the wargames, anything but the truth.

“Meanwhile, some of the fighter jets in the air over D.C. received no orders to shoot down planes, while other military aircraft got the OK from the Secret Service to fly ‘weapons free,’ which means they had wide authority to take out suspicious aircraft.” Right you are. But what is the significance of the Secret Service in this observation? It means that Dick Cheney was running the operation.

How dangerous was—and is—the air at ground zero?” Good Question. But why not mention Jenna Orkin, whose World Trade Center Environmental Organization has been providing the answer for the past four years?

I’ll stop there, because the rest of the article is pretty good. – JAH]

Open and Shut

Four years later, we still have ten big questions

by Jarrett Murphy
December 5th, 2005 6:30 PM,murphy,70685,6.html

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

On Monday, December 5, the 9-11 Public Discourse Project—a private group formed by 9-11 Commission members after their official mandate lapsed in 2004—held a wrap-up press briefing in Washington, signaling the last gasp of official inquiries into the attacks four years ago. The National Institute of Standards and Technology also recently completed its final report on the twin towers. Already gathering dust are a Federal Emergency Management Agency study, the joint inquiry by Congress, the McKinsey reports on New York City's emergency response, probes by federal inspectors general, and other efforts to resolve the myriad doubts about the hijackings.

Some questions can't be answered: People who lost loved ones will never know exactly how the end came, if it hurt, what the final thoughts and words were. But other questions are more tractable. Here are 10 of them:

1. Where was the "National Command Authority"?

There has never been a true accounting of why the nation's leaders were out of the loop for so long that morning. George W. Bush and his aides even have told different versions of how the president was actually informed of the first plane striking: The president claimed erroneously that he saw it on TV, while chief of staff Andrew Card said it was Karl Rove who told the president. According to the official version, after Rove told Bush, the president talked to then national-security adviser Condoleezza Rice. She told him about the crash but apparently did not know about the reported hijacking of American Airlines Flight 11, which military air defenses learned about 17 minutes earlier.

Secretary of Defense Donald Rumsfeld was informed of the second plane hitting the WTC—yes, the second plane—during his intelligence briefing but continued the briefing and was at his desk when Flight 77 struck the Pentagon.

Together, the president and secretary of defense are the National Command Authority that is supposed to lead the country in the case of military emergency. But Bush didn't get in touch with Rumsfeld until after 10 a.m., around the time the fourth and final plane crashed in Shanksville, Pennsylvania. When Bush was criticized days after 9-11 for failing to return to Washington until more than 10 hours after the first attack, the White House claimed there had been a threat ("real and credible," in flack Ari Fleischer's words) to Air Force One. There was none. All the 9-11 Commission says of this phantom threat is that it was the product of "a misunderstood communication."

2. Who gave the order to try to shoot the planes down?

The commission is noticeably vague on this point. The official version says Dick Cheney told the military a little past 10 a.m. to shoot down a threatening plane, claiming that the president had given his approval for the order. But while a few people in the White House bunker noted a call between Cheney and Bush moments earlier, only Rice says she heard Cheney bring up the shoot-down order. Despite the fact that people at both ends of the call were taking notes, the commission found that "there is no documentary evidence of this call." Meanwhile, some of the fighter jets in the air over D.C. received no orders to shoot down planes, while other military aircraft got the OK from the Secret Service to fly "weapons free," which means they had wide authority to take out suspicious aircraft.

Since the military was given little or no notice about the planes, maybe it doesn't matter who authorized a shoot-down. But the record is unclear. Neither Cheney nor Bush testified under oath before the 9-11 panel, in public or private.

3. What exactly were all those firefighters doing in the towers?

Reports on the disaster reflect confusion over the exact mission of the firefighters who climbed the twin towers, many of whom died. The 9-11 Commission says fire chiefs decided early on that because the fire was so big, their job would "primarily be one of rescue." But NIST reports that some fire commanders thought their men would fight fires to save people trapped above them, and individual fire companies thought their mission was to "get up to the fire as soon as possible, put the fire out, and get ready for their next assignment." According to oral histories collected by the FDNY, some firefighters were told to head up the stairs carrying hoses, and others to drop their hoses in the lobby. Some were ordered simply to head up the stairs without a clear idea of where they were going or why.

While it is doubtless that first responders saved lives that day, it's not clear that there were many people left to be rescued when late-arriving firefighters began climbing the stairs, especially in the north tower. Mayors Giuliani and Bloomberg have said up to 25,000 people escaped the towers; NIST has put that figure at around 15,000—still a blessing. But NIST believes that 90 percent of those civilians who survived started descending both towers before the second plane hit. (About 1,000 of them were "mobility impaired" and needed help getting out.) Just shy of 2,000 of the roughly 2,150 civilians who died in the towers were trapped above the impact zones, with no chance of rescue.

4. Did anyone think the towers would collapse?

Reports on the FDNY response to 9-11 generally agree that, as the FDNY-commissioned McKinsey study put it, "Chief officers considered a limited, localized collapse of the towers possible, but did not think that they would collapse entirely." For some of the fire officers, that confidence might have been based on a misconception about how the towers were built: The FDNY chief of safety says in his oral history that he thought the towers were made of block construction, with a solid concrete core, so that fire crews would have at least three hours to work. In fact, the cores of the towers were sheetrock over steel. And the citywide safety chief in charge that day didn't know a plane had hit the north tower.

Evidently, fears about collapse evolved as the disaster wore on. Peter Ganci, the highest ranking chief and one of the 343 fire personnel who died, reportedly told the commander in the north-tower lobby at 9:45 a.m. that he might want to consider an evacuation—almost 45 minutes before that building collapsed. Assistant Chief Joseph Callan, the citywide tour commander that day, told investigators: "Approximately 40 minutes after I arrived in the lobby I made a decision that the building was no longer safe and that was based on the conditions in the lobby—large pieces of plaster falling, all the 20-foot-high glass panels on the exterior of the lobby were breaking, there was obvious movement of the building, and that was the reason on the handy talky I gave the order for all fire department units to leave the north tower. Approximately ten minutes after that we had collapse of the south tower." Fire chiefs also received—just moments before the south tower fell—a report that someone from the city's Office of Emergency Management thought the towers weren't structurally sound. The source of that report is unknown.

5. Why was Giuliani's command bunker at ground zero?

A constant refrain in rehashes of 9-11 is that the cooperation between police and fire services that day was poor. The OEM was unable to bridge the gap because it was busy evacuating its own emergency center in 7 WTC. "The loss of the OEM operations center," NIST found, "created difficulties related to the coordination of emergency responder operations and resources." Because the World Trade Center had been a terrorist target in 1993, Giuliani was criticized in 1998 for his decision to locate the emergency center there. Yet when Giuliani and Jerry Hauer (who was OEM director when the 7 WTC site was picked) appeared before the 9-11 Commission, no one asked them about the bunker. Nor did commissioners ask Giuliani specifically why firefighters were using the same radios on 9-11 that had worked so poorly in the '93 bombing. Part of the reason was the city had broken contracting rules when it purchased new radios earlier in 2001, and those radios had to be withdrawn because of technical problems.

6. Why did 7 WTC fall?

Seven World Trade Center—where, besides OEM, the CIA, Salomon Smith Barney, and other entities had offices—was the last building to collapse on 9-11. It was also probably the first steel skyscraper anywhere to collapse solely because of fire. We still don't know why. While NIST has completed its twin towers reports, it has delayed its 7 WTC report twice; it's currently not expected until next spring.

Several 7 WTC tenants, including OEM and the Secret Service, had tanks filled with diesel fuel to power emergency generators. If that fuel leaked and burned, it may have heated the building's steel supports to the point of failure, but according to FEMA's report on the collapse this "best hypothesis has only a low probability of occurrence."

9/11 Aftermath
photo: Charles Petersheim

7. How did the twin towers fall?

Many FDNY personnel who saw the south tower collapse reported explosions at the lower levels as the top began collapsing. These reports, as well as "squibs" of smoke seen on video of the collapses, have led to theories that the towers were brought down in controlled explosions. NIST dismisses these notions, claiming that the puffs of smoke were the result of air being forced down by the top of the tower collapsing.

NIST said the towers fell because the planes shook fireproofing loose from the steel superstructure, and the fire heated the floor-supporting trusses so much that they pulled in on support columns that were already holding more than their regular load. But NIST's computer simulation stops at the point the collapse begins, and does not document exactly how the rest of the buildings crumbled in 10 seconds. The reason for this omission could be the sheer complexity of the computations—even NIST's simplified model took weeks to run on a computer.

Conspiracy theorists aren't the only ones who dispute NIST's version: Some fire scientists also take issue with the institute's methods and conclusions. And the point isn't just historical. The lessons learned from the WTC collapse will inform decisions about the safety of other modern office towers.

8. How dangerous was—and is—the air at ground zero?

A few days after the towers fell, the Environmental Protection Agency announced that tests of air and water near the WTC site "indicate that these vital resources are safe." The only problem was, as the EPA's inspector general reported later, the agency "did not have sufficient data and analyses to make such a blanket statement." What's more, the inspector general said, "the White House Council on Environmental Quality influenced, through the collaboration process, the information that EPA communicated to the public."

The 9-11 Commission did not address this topic in the body of its final report. In a single footnote, the panel said it didn't have the expertise to talk about the air testing, but let the White House off the hook for influencing EPA press releases. Then–EPA head Christine Whitman told the commission that she had met with a top Bush economic adviser "regarding the need to get financial markets open quickly," but denied any pressure to fudge the air quality readings. A group of 12 people has sued the EPA over health problems they blame on poor air quality near the site after the attacks. Meanwhile, the EPA just last week approved a plan to test and clean apartments south of Canal Street.

9. What exactly did Zacarias Moussaoui plan to do?

Was he the 20th hijacker? Or was he supposed to pilot a fifth plane on September 11? Or was he a backup for Ziad Jarrah, the Flight 93 hijack pilot, whose disagreements with Mohammed Atta almost got him dropped from the plot? Or was he a pilot for a "second wave" of attacks, as captured Al Qaeda leader Khalid Shaikh Mohammed is quoted saying in the 9-11 Commission report?

Last April, Moussaoui pled guilty to conspiracy charges, but claimed that he had nothing to do with 9-11 and instead was planning a separate attack to try to free Sheikh Omar Abdel Rahman.

The Department of Justice hasn't said publicly exactly what Moussaoui did—stating in court filings merely that Moussaoui "participated" in the 9-11 plot—but it does want to execute him for his alleged role

10. What's on those blanked-out pages?

"The Joint Inquiry Into Intelligence Community Activities Before and After the Terrorist Attacks of September 11, 2001," which was released in late 2002, included 28 pages that were blanked out, apparently concerning the possible role of Saudi government officials. Those aren't the only blank spots in the public record. As the Voice reported in October, there are multiple redactions in the FDNY oral histories that in some cases seem to concern the radios or suspicious activity near the WTC site before and during the attacks.

Back To Story List

Japan to keep releasing oil from reserves via IEA

The Japan Times
Dec. 6, 2005

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

Japan will continue to release oil reserves held by the private sector for the fourth straight month starting Tuesday running through Jan. 4 in a concerted action with the International Energy Agency.

In a joint action by 26 IEA members following hurricane damage to U.S. oil production facilities, Japan has since Sept. 7 reduced its normal 70-day minimum stockpile among 66 private-sector oil companies by three days to 67 in a bid to increase supplies and stabilize the global oil market.

The Natural Resources and Energy Agency, part of the Ministry of Economy, Trade and Industry, said Monday that although the prospect of an oil supply shortage has declined, the IEA has maintained its policy of seeking additional joint oil stock releases if necessary.

The Paris-based energy watchdog announced Sept. 2 that its members would release a total of 60 million barrels from their strategic oil reserves after Hurricane Katrina severely damaged oil production facilities along the U.S. Gulf Coast.

The discharge target has not been achieved yet and no IEA member has ended releases from its oil stockpile, an agency official said.

Japan was asked to handle 12.2 percent of the release.

Back To Story List

[Another flip-flop. First the pipeline was going to Japan but Japan had to finance it. Then last summer Russia said that pipeline would go to China. Now more reassurances for Japan. Russia, at or near its own peak of production (which will likely be followed by a severe decline), will never be able to satisfy both countries’ thirst. Now emerging is the debate over the return of several small islands. Why is that important? Because China’s claim to mineral rights out to the edge of the Continental Shelf leaves Japan with fewer places to look for energy. Russian territorial claims on the Southern Kurils leave that region open to Russian exploration and development and further squeeze the Japanese. Make no mistake, Japan is being squeezed out of the energy picture here, slowly but surely, and now there are three powers that may ultimately butt nuclear warheads. Japan is in the weak spot in both cases and the Kurils are so far out to sea that China won’t make a claim there. This is starting to look dangerous and my concern about nuclear conflict there has just ratcheted up a notch. – MCR]

Putin reassures Japan on pipeline

Russian President Vladimir Putin says his country is committed to building a pipeline from Siberia to the Pacific.

21 November 2005

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.


Speaking in Tokyo, he said the pipeline would bring oil supplies to the entire Asia-Pacific region, including Japan.

Tokyo is competing with China over the route of the pipeline, which is already in the first stage of construction.

Mr Putin is in Japan to boost the two nations' rapidly expanding economic ties, but little progress is expected over a 60-year-old territorial dispute.

He later held talks with Japanese Prime Minister Junichiro Koizumi.

"We plan to build the pipeline to the Pacific coast with eventual supplies to the Asia-Pacific region including Japan," Mr Putin told a meeting of Russian and Japanese business leaders in Tokyo.

Tokyo has been lobbying for the second stage to be constructed to the Pacific coast. Beijing wants it to head south, to the industrial cities of northern China.

No date has yet been set for the second stage of construction.

"I'm confident that the implementation of this project will significantly strengthen the energy infrastructure of the entire region," Mr Putin said.

'Deep gulf'

Relations between Russia and Japan have been strained by the long-running dispute over four small islands off Japan's coast.

The islands, known as the southern Kurils in Russia and the Northern Territories in Japan, were occupied by the Soviet Union after WWII.

Russia has said it may surrender two of the islands, but Japan wants all four returned.

Because of the dispute, the two countries have never signed a peace treaty to formally end the war.

Ahead of Mr Putin's visit, Mr Koizumi admitted there was a "deep gulf" over the issue, and warned an agreement was unlikely to be reached in his talks with the Russian leader.

Mr Putin has also warned that he would not discuss giving up control of the islands.

But he told the meeting that stronger economic relations between the two countries would improve their overall ties.

"I'm confident that building stable, pragmatic long-term economic ties is being supported by politicians' efforts to build a constructive partnership," he said.

"This dialogue will contribute to more openness and confidence between our business communities."

During Mr Putin's three-day visit, the Japanese government is expected to sign an agreement endorsing Russia's bid to join the World Trade Organisation.

For its part Moscow has made sympathetic noises about Japan's own ambitions to become a permanent member of the UN Security Council.

Back To Story List

[As one astute observer has noted, it’s going to be impossible for Asia to double oil use if no new fields are found. There are no big fields to find and although “demand destruction” may have had some temporary impact in the West, it clearly hasn’t slowed down the red-hot Chinese economy. All the pieces are still in place for 2006 to be a year of emerging conflict and economic downturns. Japan has begun looking at possible coal purchases from China. And while China is ordering 60 bullet trains from Japan, that does little to divert the two Asian giants from a collision course over energy. – MCR]

Asian oil demand may double as China booms

By TAN HWEE ANN in Melbourne
December 6 2005

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

ASIAN oil consumption may double as China and other developing nations in the region need more of the fuel to feed their booming economies, said Marc Faber, who publishes The Gloom, Boom & Doom monthly newsletter.

Asian nations are consuming 21 million barrels of oil a day, compared to global production of 83 million barrels, said Faber, managing director of Marc Faber Ltd., which manages US$300 million (US$1 = RM3.78).

Rising demand for crude oil, along with two hurricanes that disabled most US production in the Gulf of Mexico this year,led prices to a record US$70.85 a barrel on August 30.

Oil producers are struggling to raise output due to a lack of investment in new plants and fields.

“After 1965, not a single large oil field has been discovered,” said Faber at a Commodity Investment World conference in Sydney.

“I doubt the incremental supply of oil in the next 10 years will match the incremental demand from Asia,” he added.

Production from Saudi Arabia, the world’s largest oil producer, will likely decline over time, said Faber.

China’s economy, the world’s seventh-largest, has tripled to US$1.7 trillion in the past decade, expanding by an average 8.7 per cent a year, as the Government encouraged investments to create jobs and improve living standards. — Bloomberg

Back To Story List

[FTW has never stopped warning about this. Now we have a partial admission which is much better than nothing. Kudos to the Christian Science Monitor. – MCR]

If winter is bitter, brace for a natural-gas crunch

By Mark Clayton
Staff writer of The Christian Science Monitor
November 29, 2005 edition

In accordance with Title 17 U.S.C. Section 107, this material is distributed without profit to those who have expressed a prior interest in receiving the included information for research and educational purposes.

From Maine to Florida, from Virginia to Missouri, as much as half the United States confronts the possibility that harshly cold weather will lead to restrictions of natural-gas supplies. In some places - areas heavily dependent on natural gas to produce electricity - the prospect of “rolling blackouts,” or controlled power outages, is much higher than in previous winters.

Any natural-gas cutoffs would primarily affect electric-power plants and factories fueled by gas, not homes, and be most likely in the Northeast.

If cold deepens for prolonged periods, the likelihood of interrupted natural-gas supplies rises to 30 percent in the Northeast and to 10 percent as far south as Florida and as far west as Missouri, according to a recent report by the Interstate Natural Gas Association of America (INGAA), a trade association representing gas pipeline companies. In a “worst-case” scenario, chances of interrupted gas rise to 40 percent for the Northeast and 25 percent across the eastern seaboard.

Though power-industry officials in New England are the most concerned, noting the region’s lack of fuel diversity and propensity for intense cold, the impact could be far broader. If winter temperatures plummet for long, natural-gas supplies could be quickly depleted, leading to a power crunch in some regions and soaring prices across a wider area, experts say.

“By no stretch of the imagination is this only going to impact New England,” says Richard Levitan, an energy expert who has analyzed the impact on the utility industry of this fall’s natural-gas shortfall after the Gulf hurricanes. “The Southeast, Pennsylvania, New Jersey, Maryland, and New York, they’re all going to feel this.”

Even so, gas cutoffs would not automatically mean power outages to residential and commercial consumers. Regions with diversified fuel sources, such as the Midwest or Southern states that rely more on nuclear or coal for electricity, are less likely to see power outages at all. In all regions, residential customers who heat homes with natural gas are unlikely to have their supply interrupted, because gas utilities typically have “firm contracts” with distributors.

A rapid shift to natural gas

Overall, 23 percent of America’s electricity-generating capacity is fueled by natural gas. In New England, however, fully 40 percent of electricity is drawn from natural-gas-fired power plants, up from just 17 percent in 1999. At least 22 natural-gas-fired plants, with a collective 10,000 megawatts of generating capacity, have been built in the region since the late 1990s - a shift that, at the time, seemed good for business and for the environment (because natural gas burns cleaner than alternatives).

That buildup has left New England’s energy mix skewed toward natural gas, which now costs five times what it did three years ago and which is in short supply this winter. This is where the risk is highest for rolling blackouts - shutting off power for 20 to 30 minutes at a time - in sections of the region’s grid.

“If gas supplies are disrupted and seasonal oil storage [backup fuel for generators] is drawn down, then we get into a problem where we’re now short of electrical generating capacity,” says James Coyne, an energy expert at Lexecon, a Boston economic consulting firm.

Such scenarios might seem a distant threat. Winter began mildly, and natural-gas storage caverns are now almost full [hyperlink inserted by FTW]. Still, hurricane damage continues to block about 6 percent of the nation’s gas supply flowing through pipelines north from the Gulf of Mexico. The government reported last week that 32 percent of the Gulf supply remains “shut in” - a loss of 3.2 billion cubic feet per day. That’s at the high end of the range the INGAA predicts will be “missing” this winter.

This missing flow of gas could be critical in mid- to late winter, when reserves are drawn down.

“This loss of supply - even if only temporary - is cause for concern,” Phillip Wright of Williams Pipeline, the nation’s second largest gas transporter, told Congress this month. “It cannot be emphasized enough that storage supplements, but does not replace, natural gas flowing through the interstate pipeline network.”

Potential problems exist in New York, where half of the electricity-generating capacity is fueled by natural gas, and Florida, where it is 35 percent. New York’s advantage is that two-thirds of its gas-fired generators are “dual-fuel” facilities that can switch to burn oil.

That’s not the case in New England, where only about one-third of the gas-fired generators can burn oil as a backup. As a result, the Independent System Operators of New England, which coordinates power delivery and oversees system reliability across the region, is scrambling.

“We’re talking to all the New England states about greater fuel diversity to try to develop more than 1,000 megawatts of dual-fuel capacity,” says Ken McDonnell, ISO New England spokesman.

Developing new dual-fuel capability, however, takes time. And environmentalists, meanwhile, are protesting moves to lift air-pollution restrictions on dual-fuel power plants that can burn distillate fuel oil. Massachusetts environmental officials are expected to decide soon whether to allow more oil-burning.

The tale of a very cold day

In the effort to avoid blackouts, a large hurdle may have just been lowered: utilities’ push for profits.

When natural-gas prices have been high during past power crunches, some power companies have elected to sell their gas rather than burn it for electricity. Such “economic outages” occurred in 2004 during one of the sharpest New England cold snaps in years.

On the bitterly cold day of Jan. 14, as winter power demand headed toward a new record, power companies failed to heed grid operators’ urgent call to get every functioning power plant in the region online immediately.

As ISO New England battled to prevent blackouts from rolling across the region, nine power plants representing 2,159 megawatts of capacity sat on the sidelines, a post-mortem report on the emergency found. Some apparently were hampered by weather-related problems. But others ignored the plea. With natural-gas prices soaring to 10 times their normal levels, some found it more lucrative to sell their gas contracts than to use them to generate power, experts say.

Though blackouts were averted, the incident prompted the ISO to push for a “last resort requirement” to compel generators to make electricity in an emergency. On Nov. 17, the Federal Energy Regulatory Commission granted the request. It won’t solve the power problem. But there will be, as the ISO’s lawyer wrote to FERC, “a greater opportunity to avoid load shedding that would place human life and property in jeopardy during a period of frigid cold.”



Back To Story List

Please Note
This function has been disabled.

FROM email:
Your name:
TO email: